(New page: assume that <math>y[n] = x[n-10]</math> unit impulse response <math>h[n] = \delta[n]</math> <math>y[n] = h[n]</math> then we can can a unit impulse response as <math>h[n]= \delta[n-...)
 
Line 12: Line 12:
  
 
<math>h[n]= \delta[n-10]</math>
 
<math>h[n]= \delta[n-10]</math>
 +
 +
for the frequency response,
 +
 +
<math>F(z) = \sum_{m=-\infty}^{\infty} h[m]e^{jmw}</math>
 +
 +
<math>F(z) = \sum_{m=-\infty}^\infty \delta[m-10]e^{jmw}</math>

Revision as of 13:05, 26 September 2008

assume that

$ y[n] = x[n-10] $

unit impulse response

$ h[n] = \delta[n] $

$ y[n] = h[n] $

then we can can a unit impulse response as

$ h[n]= \delta[n-10] $

for the frequency response,

$ F(z) = \sum_{m=-\infty}^{\infty} h[m]e^{jmw} $

$ F(z) = \sum_{m=-\infty}^\infty \delta[m-10]e^{jmw} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn