(DT LTI System)
(DT LTI System)
Line 8: Line 8:
  
 
<math>\ h[n] = 2 \delta[n + 3] + \delta[n - 8]</math>
 
<math>\ h[n] = 2 \delta[n + 3] + \delta[n - 8]</math>
 +
 +
 +
 +
Frequency Response:
 +
 +
<math>\ H(s) = \sum_{- \infty}^{\infty}h[n]e^{j \omega n}</math>
 +
 +
 +
 +
Plugging in the values:
 +
 +
<math>\ H(s) = \sum_{- \infty}^{\infty}(2 \delta[n + 3] + \delta[n - 8])(e^{j \omega n})</math>
 +
 +
<math>\ = 2e^{j \omega 3} + e^{-j \omega 8}</math>
 +
 +
 +
== Part B ==

Revision as of 14:36, 26 September 2008

DT LTI System

$ \ y[n] = 2x[n + 3] + x[n - 8] $


Unit Impulse Response:

$ \ h[n] = 2 \delta[n + 3] + \delta[n - 8] $


Frequency Response:

$ \ H(s) = \sum_{- \infty}^{\infty}h[n]e^{j \omega n} $


Plugging in the values:

$ \ H(s) = \sum_{- \infty}^{\infty}(2 \delta[n + 3] + \delta[n - 8])(e^{j \omega n}) $

$ \ = 2e^{j \omega 3} + e^{-j \omega 8} $


Part B

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva