Line 25: Line 25:
  
 
<math>
 
<math>
\ a_1 = \frac{1}{2\pi}\int_{2\pi}^{\infty} \left (-1 \right )^1
+
\ a_1 = \frac{1}{2\pi}\int_{2\pi}^{\infty} \left (-1 \right )
 
\frac{t^{2}}{ \left(2 \right )!}e^{-j\omega_0t}\, dt
 
\frac{t^{2}}{ \left(2 \right )!}e^{-j\omega_0t}\, dt
 
</math>
 
</math>

Revision as of 12:47, 26 September 2008

The function y(t) in this example is the periodic continuous-time signal cos(t) such that

$ y(t) = \ cos(t) $

where cos(t) can be expressed by the Maclaurin series expansion

$ \ cos(t) = \sum_{k=0}^\infty \left (-1 \right )^k \frac{t^{2k}}{ \left(2k \right )!} $

and its Fourier series coefficients are described by the equations below.

$ \ a_k = \frac{1}{T}\int_{T}^{\infty} y(t)e^{-jk\omega_0t}\, dt $

$ \omega_0 = \frac{2\pi}{T} = 1 $

With this information it is possible to determine the first fiew coefficients of the Fourier series of the signal, as seen below.

$ \ a_1 = \frac{1}{2\pi}\int_{2\pi}^{\infty} \left (-1 \right ) \frac{t^{2}}{ \left(2 \right )!}e^{-j\omega_0t}\, dt $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett