Line 9: Line 9:
  
 
<math>
 
<math>
\ cos(x) = \sum_{n=0}^\infty a_n x^n
+
\ cos(x) = \sum_{n=0}^\infty \left (a_n \right ) x^n
 
</math>
 
</math>
  

Revision as of 12:20, 26 September 2008

The function y(t) in this example is the periodic continuous-time signal cos(x) such that

$ y(t) = \ cos(x) $

where cos(x) can be expressed by the Maclaurin series expansion

$ \ cos(x) = \sum_{n=0}^\infty \left (a_n \right ) x^n $

where its Fourier series coefficients are described by the equation

$ \left ( \frac{1}{jk\omega_0} \right )a_k = \left ( \frac{1}{jk \left (2\pi/T \right)} \right )a_k $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood