(New page: CT LTI system: <math>y(t)=6x(t)+4x(t-3)\!</math> == Part A == The unit impulse response of this system is: <math>h(t)=6\delta(t)\!+4\delta(t-3)</math> Taking the laplace transform of ...)
 
 
Line 24: Line 24:
 
<math>x(t) = \frac{3}{2}e^{i7t}+ \frac{3}{2}e^{-i7t} + \frac{11}{2i}e^{i4t}- \frac{11}{2i}e^{i(4t-3)}</math> and we know that <math>w=1\!</math>
 
<math>x(t) = \frac{3}{2}e^{i7t}+ \frac{3}{2}e^{-i7t} + \frac{11}{2i}e^{i4t}- \frac{11}{2i}e^{i(4t-3)}</math> and we know that <math>w=1\!</math>
  
So, the response to this system to the signal I defined in Q1 is:
+
So, the response of this system to the signal I defined in Q1 is:
  
 
<math>y(t)=\bigg(6+e^{-3i}\bigg)\bigg(\frac{3}{2}e^{i7t}+ \frac{3}{2}e^{-i7t} + \frac{11}{2i}e^{i4t}- \frac{11}{2i}e^{-i4t}\bigg)</math>
 
<math>y(t)=\bigg(6+e^{-3i}\bigg)\bigg(\frac{3}{2}e^{i7t}+ \frac{3}{2}e^{-i7t} + \frac{11}{2i}e^{i4t}- \frac{11}{2i}e^{-i4t}\bigg)</math>
  
 
<math>y(t)=9e^{i7t}+\frac{3}{2}e^{i(7t-3)}+9e^{-i7t}+\frac{3}{2}e^{-i(7t+3)}+\frac{33}{i}e^{i4t}+\frac{11}{2i}e^{i(4t-3)}-\frac{33}{i}e^{-i4t}-\frac{11}{2i}e^{-i(4t+3)}</math>
 
<math>y(t)=9e^{i7t}+\frac{3}{2}e^{i(7t-3)}+9e^{-i7t}+\frac{3}{2}e^{-i(7t+3)}+\frac{33}{i}e^{i4t}+\frac{11}{2i}e^{i(4t-3)}-\frac{33}{i}e^{-i4t}-\frac{11}{2i}e^{-i(4t+3)}</math>

Latest revision as of 13:36, 26 September 2008

CT LTI system: $ y(t)=6x(t)+4x(t-3)\! $


Part A

The unit impulse response of this system is:

$ h(t)=6\delta(t)\!+4\delta(t-3) $

Taking the laplace transform of the unit impulse response of this system gives us:

$ H(s)=6+e^{-3s}\! $


Part B

The signal used in Q1 is:

$ x(t) = 3cos(7t) + 11sin(4t)\! $

which is also equal to:

$ x(t) = \frac{3}{2}e^{i7t}+ \frac{3}{2}e^{-i7t} + \frac{11}{2i}e^{i4t}- \frac{11}{2i}e^{i(4t-3)} $ and we know that $ w=1\! $

So, the response of this system to the signal I defined in Q1 is:

$ y(t)=\bigg(6+e^{-3i}\bigg)\bigg(\frac{3}{2}e^{i7t}+ \frac{3}{2}e^{-i7t} + \frac{11}{2i}e^{i4t}- \frac{11}{2i}e^{-i4t}\bigg) $

$ y(t)=9e^{i7t}+\frac{3}{2}e^{i(7t-3)}+9e^{-i7t}+\frac{3}{2}e^{-i(7t+3)}+\frac{33}{i}e^{i4t}+\frac{11}{2i}e^{i(4t-3)}-\frac{33}{i}e^{-i4t}-\frac{11}{2i}e^{-i(4t+3)} $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett