(Rewritten in e^{jw_0} Form)
Line 3: Line 3:
  
 
==Rewritten in <math>e^{jw_0}</math> Form==
 
==Rewritten in <math>e^{jw_0}</math> Form==
<math>x(t) =  \frac{4\pi}{3} + \frac{1}{j2000}(e^{j1000\pi t}+e^{j-1000\pi t}) - \frac{1}{j1000}(e^{j1000\pi t}-e^{j-1000\pi t}) +</math>
+
<math>x(t) =  \frac{4\pi}{3} + \frac{1}{j2000}(e^{j1000\pi t}+e^{j-1000\pi t}) - \frac{1}{j1000}(e^{j1000\pi t}-e^{j-1000\pi t})</math>
  
 
==Fourier Series Coefficients==
 
==Fourier Series Coefficients==

Revision as of 09:11, 26 September 2008

Periodic CT Signal

$ x(t) = \frac{4\pi}{3} + \frac{1}{2}sin(1000\pi t) - cos(1000\pi t) \ $

Rewritten in $ e^{jw_0} $ Form

$ x(t) = \frac{4\pi}{3} + \frac{1}{j2000}(e^{j1000\pi t}+e^{j-1000\pi t}) - \frac{1}{j1000}(e^{j1000\pi t}-e^{j-1000\pi t}) $

Fourier Series Coefficients

$ a_0 = \frac{4\pi}{3} $

$ a_1 = \frac{1}{1000} $

$ w_0 = 1000\pi\ $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman