(New page: ==Periodic CT Signal== <math>x(t) = 2sin(1000\pi t) + \frac{4\pi}{3} - cos(2000\pi t)\ </math> ==Fourier Series Coefficients==)
 
Line 1: Line 1:
 
==Periodic CT Signal==
 
==Periodic CT Signal==
<math>x(t) = 2sin(1000\pi t) + \frac{4\pi}{3} - cos(2000\pi t)\ </math>
+
<math>x(t) = \frac{4\pi}{3} + \frac{1}{2}sin(1000\pi t) - cos(1000\pi t) \ </math>
 +
 
 +
==Rewritten in <math>e^{jw_0}</math> Form==
 +
<math>x(t) =  \frac{4\pi}{3} + \frac{1}{j2000}(e^{j1000\pi t}+e^{j-1000\pi t}) - \frac{1}{j1000}(e^{j1000\pi t}-e^{j-1000\pi t}) +</math>
  
 
==Fourier Series Coefficients==
 
==Fourier Series Coefficients==
 +
<math>a_0 = \frac{4\pi}{3}</math>
 +
 +
<math>a_1 = \frac{1}{1000}</math>
 +
 +
<math>w_0 = 1000\pi\ </math>

Revision as of 09:10, 26 September 2008

Periodic CT Signal

$ x(t) = \frac{4\pi}{3} + \frac{1}{2}sin(1000\pi t) - cos(1000\pi t) \ $

Rewritten in $ e^{jw_0} $ Form

$ x(t) = \frac{4\pi}{3} + \frac{1}{j2000}(e^{j1000\pi t}+e^{j-1000\pi t}) - \frac{1}{j1000}(e^{j1000\pi t}-e^{j-1000\pi t}) + $

Fourier Series Coefficients

$ a_0 = \frac{4\pi}{3} $

$ a_1 = \frac{1}{1000} $

$ w_0 = 1000\pi\ $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn