(→Ao) |
(→Ao) |
||
Line 16: | Line 16: | ||
==Ao== | ==Ao== | ||
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{0}dt</math> | <math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{0}dt</math> | ||
+ | ==A1== | ||
+ | ==A2== | ||
+ | ==A-1== | ||
+ | ==A-2== |
Revision as of 07:54, 26 September 2008
Contents
Equations
Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $
From Phil Cannon
Input Signal
$ x(t)=(1+j)cos(3t)+14sin(6t)\! $
Ao
$ Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{0}dt $