(→Input Signal) |
(→A0) |
||
Line 14: | Line 14: | ||
<math>x(t)=(1+j)cos(3t)+14sin(6t)\!</math> | <math>x(t)=(1+j)cos(3t)+14sin(6t)\!</math> | ||
− | == | + | ==Ao== |
<math>x(t) =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{0}dt</math> | <math>x(t) =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{0}dt</math> |
Revision as of 07:53, 26 September 2008
Equations
Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $
From Phil Cannon
Input Signal
$ x(t)=(1+j)cos(3t)+14sin(6t)\! $
Ao
$ x(t) =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{0}dt $