(New page: == Equations == Fourier series of x(t): <br> <math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math> Signal Coefficients: <br> <math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</...) |
(→Equations) |
||
Line 9: | Line 9: | ||
<math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math> | <math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math> | ||
− | + | From Phil Cannon | |
+ | |||
+ | ==Input Signal | ||
+ | |||
+ | <math>x(t) = (7+2*i)*cos(4*pi*t) + 14*sin(6*pi*t) |
Revision as of 07:37, 26 September 2008
Equations
Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $
From Phil Cannon
==Input Signal
$ x(t) = (7+2*i)*cos(4*pi*t) + 14*sin(6*pi*t) $