Line 16: Line 16:
 
<math>H(s)=-se^{-s\tau}|_0^\infty \,</math><br>
 
<math>H(s)=-se^{-s\tau}|_0^\infty \,</math><br>
 
<br>
 
<br>
<math>H(s)=-s(e^{-s\infty} - e^{0})\,</math><br>
+
<math>H(s)=-s(e^{-\infty} - e^{0})\,</math><br>
 +
<br>
 +
<math>H(s)=s\,</math><br>
  
 
==Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal==
 
==Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal==

Revision as of 07:14, 26 September 2008

Obtain the input impulse response h(t) and the system function H(s) of your system

A very simple system:
$ y(t)=x(t)\, $ and $ x(t)=\delta(t) $

We can get $ h(t)=\delta(t)\, $
$ y(t) = \int^{\infty}_{-\infty} \delta(t) dt\, $

$ H(s)=\int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau $

$ H(s)=\int_{-\infty}^{\infty}u(\tau)e^{-s\tau}d\tau $

$ H(s)=\int_{0}^{\infty}e^{-s\tau}d\tau $

$ H(s)=-se^{-s\tau}|_0^\infty \, $

$ H(s)=-s(e^{-\infty} - e^{0})\, $

$ H(s)=s\, $

Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood