Line 2: | Line 2: | ||
A very simple system: | A very simple system: | ||
<br> | <br> | ||
− | <math>y(t)=x(t)\,</math> | + | <math>y(t)=x(t)\,</math> and <math>x(t)=\delta(t)</math> |
<br><br> | <br><br> | ||
We can get <math>h(t)=\delta(t)\,</math> | We can get <math>h(t)=\delta(t)\,</math> | ||
<br> | <br> | ||
− | <math>y(t) = \int^{\infty}_{-\infty} h( | + | <math>y(t) = h(t) * x(t) dt\,</math><br> |
+ | <math>y(t) = \int^{\infty}_{-\infty} h(\tau) x(t-\tau) d\tau\,</math><br> | ||
+ | |||
==Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal== | ==Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal== |
Revision as of 06:59, 26 September 2008
Obtain the input impulse response h(t) and the system function H(s) of your system
A very simple system:
$ y(t)=x(t)\, $ and $ x(t)=\delta(t) $
We can get $ h(t)=\delta(t)\, $
$ y(t) = h(t) * x(t) dt\, $
$ y(t) = \int^{\infty}_{-\infty} h(\tau) x(t-\tau) d\tau\, $