(New page: <math>x(t) = \sin(4\pi t) + \sin(6\pi t)</math></BR> <math>x(t) = \frac{e^{j4\pi t} - e^{-j4\pi t}}{2}} \frac{e^{j6\pi t} - e^{-j6\pi t}}{2}}\,</math>) |
|||
Line 1: | Line 1: | ||
− | <math>x(t) = \sin(4\pi t) + \sin(6\pi t)</math | + | <math>\ x(t) = \sin(4\pi t) + \sin(6\pi t)</math> |
− | <math>x(t) = \frac{e^{j4\pi t} - e^{-j4\pi t}}{2} | + | |
+ | |||
+ | <math>\ x(t) = (\frac{e^{j4\pi t} - e^{-j4\pi t}}{2}) (\frac{e^{j6\pi t} - e^{-j6\pi t}}{2j})</math> | ||
+ | |||
+ | |||
+ | <math>\ x(t) = \frac{-1}{4}(e^{j10\pi t} - e{-j2\pi t} - e^{j2\pi t} + e^{-j10\pi t})</math> | ||
+ | |||
+ | |||
+ | <math>\ x(t) = \frac{-1}{4}(e^{5(j2\pi t)} - e^{-1(j2\pi t)} - e^{1(j2\pi t)} + e^{-5(j2\pi t)}</math> | ||
+ | |||
+ | |||
+ | <math>a_{5} = \frac{-1}{4}, a_{-1} = \frac{1}{4}, a_{1} = \frac{1}{4}, a_{-5} = \frac{-1}{4}</math> |
Revision as of 06:17, 26 September 2008
$ \ x(t) = \sin(4\pi t) + \sin(6\pi t) $
$ \ x(t) = (\frac{e^{j4\pi t} - e^{-j4\pi t}}{2}) (\frac{e^{j6\pi t} - e^{-j6\pi t}}{2j}) $
$ \ x(t) = \frac{-1}{4}(e^{j10\pi t} - e{-j2\pi t} - e^{j2\pi t} + e^{-j10\pi t}) $
$ \ x(t) = \frac{-1}{4}(e^{5(j2\pi t)} - e^{-1(j2\pi t)} - e^{1(j2\pi t)} + e^{-5(j2\pi t)} $
$ a_{5} = \frac{-1}{4}, a_{-1} = \frac{1}{4}, a_{1} = \frac{1}{4}, a_{-5} = \frac{-1}{4} $