(Solution)
Line 20: Line 20:
 
now we know <math>x[n]= 1 + a1e^{-j\pi/2}+\dfrac{1}{2}e^{-j\pi/2}+a3e^{-j\pi/2}</math>
 
now we know <math>x[n]= 1 + a1e^{-j\pi/2}+\dfrac{1}{2}e^{-j\pi/2}+a3e^{-j\pi/2}</math>
 
Since the power is minimum all the other ak values are zero.
 
Since the power is minimum all the other ak values are zero.
so x[n]= 1 + \dfrac{1}{2}e^{-j\pi/2}
+
so, <math>x[n]= 1 + \dfrac{1}{2}e^{-j\pi/2}

Revision as of 06:05, 26 September 2008

Guess Signal

The signal is DT periodic with period of 4


$ \sum_{n=2}^{10} x[n]= 8 $
$ \sum_{n=4}^7 x[n]e^{-j\pi n}=2 $

x[n] has min power among all signals that satisfy the above.

Solution

$ a0=\dfrac{1}{2T}\sum_{n=2}^{10} x[n] $
$ a0=1/8*8=1 \, $
$ \sum_{n=4}^7 x[n]e^{-j\pi n}=2 $ looks like $ ak=\dfrac{1}{N}\sum_{n=0}^{N-1} x[n]e^{-jk2\pi n /N} $

N=4,so $ ak=\dfrac{1}{4}\sum_{n=0}^{4-1} x[n]e^{-jk2\pi n /4} $ for the exponent to be -j2\pi n k/4 has to equal 2,

$ a2=\dfrac{1}{4}\sum_{n=0}^{3} x[n]e^{-j\pi n } $
$ \sum_{n=0}^{3} x[n]e^{-j\pi n }=\sum_{n=4}^7 x[n]e^{-j\pi n}=2 $
$ a2=1/4*2=1/2 \, $

now we know $ x[n]= 1 + a1e^{-j\pi/2}+\dfrac{1}{2}e^{-j\pi/2}+a3e^{-j\pi/2} $ Since the power is minimum all the other ak values are zero. so, $ x[n]= 1 + \dfrac{1}{2}e^{-j\pi/2} $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett