Line 10: Line 10:
  
 
<math>a_k=\frac{1}{T} \int_0^Tx(t)e^{-jk\omega_ot}dt</math>
 
<math>a_k=\frac{1}{T} \int_0^Tx(t)e^{-jk\omega_ot}dt</math>
 +
 +
Going to conver the equation into signal that is all in exponentials.
 +
 +
<math>\frac{1}{2j}(e^{j4\pi t}-e^{-j4\pi t}) + \frac{1}{2}(e^{j3\pi t} + e^{-j3\pi t}) + e^{j2\pi t}</math>

Revision as of 18:18, 25 September 2008

The Signal

mmm lets randomly take...

$ \sin4\pi t + \cos3\pi t + e^{j2\pi t} $


The Coefficients

Remeber... $ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $

$ a_k=\frac{1}{T} \int_0^Tx(t)e^{-jk\omega_ot}dt $

Going to conver the equation into signal that is all in exponentials.

$ \frac{1}{2j}(e^{j4\pi t}-e^{-j4\pi t}) + \frac{1}{2}(e^{j3\pi t} + e^{-j3\pi t}) + e^{j2\pi t} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood