(Repsonse of the CT system)
Line 1: Line 1:
 
 
== Unit Impulse ==
 
== Unit Impulse ==
  
Line 17: Line 16:
 
<math> y(t) = H(s)x(t)\,</math><br>
 
<math> y(t) = H(s)x(t)\,</math><br>
  
<math> y(t) = \frac{1}{2}e^{\frac{2j2\pi t}{6}} + \frac{1}{2}e^{\frac{-2j2\pi t}{6}} -2je^{\frac{2j5\pi t}{6}} + 2je^{\frac{-2j5\pi t}{6}}</math>
+
<math> y(t) = \frac{1}{j2}\frac{1}{2}e^{\frac{2j2\pi t}{6}} + \frac{1}{-j2}\frac{1}{2}e^{\frac{-2j2\pi t}{6}} \frac{1}{j5}-2je^{\frac{2j5\pi t}{6}} + \frac{1}{-j5}2je^{\frac{-2j5\pi t}{6}}</math>

Revision as of 17:45, 25 September 2008

Unit Impulse

$ h(t) = u(t-1) \, $

$ H(s) = \int^{\infty}_{-\infty} u(t-1)e^{-jw_0 t} dt\, $

$ H(s) = \int^{\infty}_{1}e^{-jw_0 t} dt\, $

$ H(s) = \frac{1}{jw_0} $


Repsonse of the CT system

$ x(t) = cos({\frac{2\pi t}{3}})+ 4sin({\frac{5\pi t}{3}})\, $

$ y(t) = H(s)x(t)\, $

$ y(t) = \frac{1}{j2}\frac{1}{2}e^{\frac{2j2\pi t}{6}} + \frac{1}{-j2}\frac{1}{2}e^{\frac{-2j2\pi t}{6}} \frac{1}{j5}-2je^{\frac{2j5\pi t}{6}} + \frac{1}{-j5}2je^{\frac{-2j5\pi t}{6}} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett