(New page: Given the following system <math>\,s(t)=6x(t-2)-5x(t)\,</math> == Part A == Find the system's unit impulse response <math>\,h(t)\,</math> and system function <math>\,H(s)\,</math>. =...) |
|||
Line 7: | Line 7: | ||
Find the system's unit impulse response <math>\,h(t)\,</math> and system function <math>\,H(s)\,</math>. | Find the system's unit impulse response <math>\,h(t)\,</math> and system function <math>\,H(s)\,</math>. | ||
+ | |||
+ | |||
+ | The unit impulse response is simply (plug a <math>\,\delta(t)\,</math> into the system) | ||
+ | |||
+ | <math>\,h(t)=6\delta(t-2)-5\delta(t)\,</math> | ||
+ | |||
+ | |||
+ | The system function is found using the following formula (for LTI systems) | ||
+ | |||
+ | <math>\,H(s)=\int_{-\infty}^{\infty}h(t)e^{-st}dt\,</math> | ||
+ | |||
+ | <math>\,H(s)=\int_{-\infty}^{\infty}(6\delta(t-2)-5\delta(t))e^{-st}dt\,</math> | ||
+ | |||
+ | <math>\,H(s)=6\int_{-\infty}^{\infty}\delta(t-2)e^{-st}dt - 5\int_{-\infty}^{\infty}\delta(t)e^{-st}dt\,</math> | ||
+ | |||
+ | using the sifting property | ||
+ | |||
+ | <math>\,H(s)=6e^{-2s}-5e^{0}\,</math> | ||
+ | |||
+ | <math>\,H(s)=6e^{-2s}-5\,</math> | ||
Revision as of 16:06, 25 September 2008
Given the following system
$ \,s(t)=6x(t-2)-5x(t)\, $
Part A
Find the system's unit impulse response $ \,h(t)\, $ and system function $ \,H(s)\, $.
The unit impulse response is simply (plug a $ \,\delta(t)\, $ into the system)
$ \,h(t)=6\delta(t-2)-5\delta(t)\, $
The system function is found using the following formula (for LTI systems)
$ \,H(s)=\int_{-\infty}^{\infty}h(t)e^{-st}dt\, $
$ \,H(s)=\int_{-\infty}^{\infty}(6\delta(t-2)-5\delta(t))e^{-st}dt\, $
$ \,H(s)=6\int_{-\infty}^{\infty}\delta(t-2)e^{-st}dt - 5\int_{-\infty}^{\infty}\delta(t)e^{-st}dt\, $
using the sifting property
$ \,H(s)=6e^{-2s}-5e^{0}\, $
$ \,H(s)=6e^{-2s}-5\, $
Part B
Compute the system's response to
$ \,x(t)=\frac{3\pi}{2}\cos(\frac{3\pi}{2}t+\pi)\sin(\frac{3\pi}{4}t+\frac{\pi}{2})\, $