Line 4: Line 4:
 
1. N = 6
 
1. N = 6
  
2. <math>\sum_{n=0}^{4}x[n] = 4</math>
+
2. <math>\sum_{n=0}^{5}x[n] = 4</math>
  
3. <math>\sum_{n=1}^{5}(-1)^nx[n] = 2</math>
+
3. <math>\sum_{n=1}^{6}(-1)^nx[n] = 2</math>
  
 
4. <math>a_k = a_{k+3}\,</math>
 
4. <math>a_k = a_{k+3}\,</math>
Line 13: Line 13:
 
== Answer ==
 
== Answer ==
  
From 1. we know that <math>x[n] = \frac{1}{6}\sum_{n=0}^{4}a_k e^{jk\frac{\pi}{3}n}\,</math>
+
From 1. we know that <math>x[n] = \frac{1}{6}\sum_{n=0}^{5}a_k e^{jk\frac{\pi}{3}n}\,</math>
  
Using 2., it is apparent that this is the formula for <math>a_k\,</math>. Specifically, for <math>a_0\,</math>
+
Using 2., it is apparent that this is the formula for <math>a_k\,</math>. Specifically, for <math>a_0\,</math>, since the only thing under the sum is <math>x[n]\,</math>. So,
 +
 
 +
<center><math>\frac{1}{6}\sum_{n=0}^{5}x[n] = 4\,</math>

Revision as of 12:22, 25 September 2008

Guess the Periodic Signal

A certain periodic signal has the following properties:

1. N = 6

2. $ \sum_{n=0}^{5}x[n] = 4 $

3. $ \sum_{n=1}^{6}(-1)^nx[n] = 2 $

4. $ a_k = a_{k+3}\, $


Answer

From 1. we know that $ x[n] = \frac{1}{6}\sum_{n=0}^{5}a_k e^{jk\frac{\pi}{3}n}\, $

Using 2., it is apparent that this is the formula for $ a_k\, $. Specifically, for $ a_0\, $, since the only thing under the sum is $ x[n]\, $. So,

$ \frac{1}{6}\sum_{n=0}^{5}x[n] = 4\, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett