Line 27: Line 27:
 
Signal:  <math>x[n] = 2\sin(\pi n + \frac{\pi}{2}) + 4\sin(\frac{\pi}{2} n + \pi)\,</math>
 
Signal:  <math>x[n] = 2\sin(\pi n + \frac{\pi}{2}) + 4\sin(\frac{\pi}{2} n + \pi)\,</math>
  
<math>x[n] = \sum^{\infty}_{k = -\infty} a_k e^{jk\frac{\pi}{2} n}\,</math>, where
+
<math>x[n] = \sum^{3}_{k = 0} a_k e^{jk\frac{\pi}{2} n}\,</math>, where
  
  
Line 39: Line 39:
  
  
<math>y[n] = \sum^{\infty}_{k = -\infty} a_k F(z) e^{jk\frac{\pi}{2} n}\,</math>
+
<math>y[n] = \sum^{3}_{k = 0} a_k F(z) e^{jk\frac{\pi}{2} n}\,</math>
  
<math>y[n] = \sum^{\infty}_{k = -\infty} a_k (1 + e^{-j\frac{\pi}{2}}) e^{jk\frac{\pi}{2} n}\,</math>
+
<math>y[n] = \sum^{3}_{k = 0} a_k (1 + e^{-j\frac{\pi}{2}}) e^{jk\frac{\pi}{2} n}\,</math>

Revision as of 13:07, 25 September 2008

Define a DT LTI system

$ y[n] = x[n+1] + x[n]\, $


Obtain the Unit Impulse Response h[n]

By definition, to obtain the unit impulse response from a system defined by $ y[n] = x[n]\, $, simply replace the $ x[n]\, $ by $ \delta[n]\, $.


$ h[n] = \delta[n+1] + \delta[n]\, $


Obtain the System Function $ F(z)\, $ of the System

$ F(z) = \sum^{\infty}_{m=-\infty} h[m]e^{jm\omega} \, $

$ F(z) = \sum^{\infty}_{m=-\infty} (\delta[m+1] + \delta[m])e^{jm\omega} \, $

$ F(z) = \sum^{\infty}_{m=-\infty} \delta[m+1]e^{jm\omega} + \delta[m]e^{jm\omega} \, $

Since the delta function is only valid when its input is zero,

$ F(z) = e^{-j\omega} + e^{0j\omega} \, $

$ F(z) = 1 + e^{-j\omega} \, $


Compute the Response of My Signal from Question 2

Signal: $ x[n] = 2\sin(\pi n + \frac{\pi}{2}) + 4\sin(\frac{\pi}{2} n + \pi)\, $

$ x[n] = \sum^{3}_{k = 0} a_k e^{jk\frac{\pi}{2} n}\, $, where


$ a_0 = 0 , k = ..., -8, -4, 0, 4, 8, ... \, $

$ a_1 = 2j , k = ..., -7, -3, 1, 5, 9, ... \, $

$ a_2 = 2 , k = ..., -6, -2, 2, 6, 10, ... \, $

$ a_3 = -2j , k = ..., -5, -1, 3, 7, 11, ... \, $


$ y[n] = \sum^{3}_{k = 0} a_k F(z) e^{jk\frac{\pi}{2} n}\, $

$ y[n] = \sum^{3}_{k = 0} a_k (1 + e^{-j\frac{\pi}{2}}) e^{jk\frac{\pi}{2} n}\, $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett