Line 14: Line 14:
  
 
<math>F(z) = \sum^{\infty}_{m=-\infty} \delta[m+1] + \delta[m]e^{jm\omega} \,</math>
 
<math>F(z) = \sum^{\infty}_{m=-\infty} \delta[m+1] + \delta[m]e^{jm\omega} \,</math>
 +
 +
<math>F(z) = \sum^{\infty}_{m=-\infty} \delta[m+1]e^{jm\omega} + \delta[m]e^{jm\omega} \,</math>

Revision as of 11:26, 25 September 2008

Define a DT LTI system

$ y[n] = x[n+1] + x[n]\, $


Obtain the Unit Impulse Response h[n]

By definition, to obtain the unit impulse response from a system defined by $ y[n] = x[n]\, $, simply replace the $ x[n]\, $ by $ \delta[n]\, $.


$ h[n] = \delta[n+1] + \delta[n]\, $


Obtain the System Function $ F(z)\, $ of the System

$ F(z) = \sum^{\infty}_{m=-\infty} h[m]e^{jm\omega} \, $

$ F(z) = \sum^{\infty}_{m=-\infty} \delta[m+1] + \delta[m]e^{jm\omega} \, $

$ F(z) = \sum^{\infty}_{m=-\infty} \delta[m+1]e^{jm\omega} + \delta[m]e^{jm\omega} \, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett