Line 4: Line 4:
  
 
Frequency Response:
 
Frequency Response:
 +
 +
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math>
 +
 +
then y(t)=\sum^{\infty}_{k = -\infty}a_k*(h(t)*e^{jj\omega_0 t})
  
 
<math>H(s) = \int^{\infty}_{-\infty} h(\tao)e^{-j\omega_0 r} d\tao</math> by definition
 
<math>H(s) = \int^{\infty}_{-\infty} h(\tao)e^{-j\omega_0 r} d\tao</math> by definition

Revision as of 11:25, 25 September 2008

LTI System: $ y(t) = Kx(t)\, $ where K is a constant

Unit Impulse Response: $ h(t) = K \delta(t)\, $

Frequency Response:

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $

then y(t)=\sum^{\infty}_{k = -\infty}a_k*(h(t)*e^{jj\omega_0 t})

$ H(s) = \int^{\infty}_{-\infty} h(\tao)e^{-j\omega_0 r} d\tao $ by definition

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva