Line 1: Line 1:
== Define a periodic DT signal ==
+
== Define a Periodic DT Signal and Compute the Fourier Series Coefficients ==
 
I am going to choose a sine signal, since there have been many cosines done already.
 
I am going to choose a sine signal, since there have been many cosines done already.
  
Line 18: Line 18:
  
 
<math>N_4sin = 4\,</math>, so the overall fundamental period is
 
<math>N_4sin = 4\,</math>, so the overall fundamental period is
 +
  
 
<math>N = 4\,</math>
 
<math>N = 4\,</math>
 +
 +
In order to find the coefficients, we must first calculate the values of <math>x[n]\,</math> for four consecutive integer values of <math>n\,</math>

Revision as of 10:24, 25 September 2008

Define a Periodic DT Signal and Compute the Fourier Series Coefficients

I am going to choose a sine signal, since there have been many cosines done already.

DT signal: $ x[n] = 2\sin(\pi n + \pi) + 4\sin(\frac{\pi}{2} n + \pi)\, $


Now, each sine has its own period, and the fundamental period of the function is the greater of the separate periods.

$ N_2sin = \frac{2\pi}{\pi} k = \frac{2}{1} k $


$ N_4sin = \frac{2\pi}{\frac{\pi}{2}} k = \frac{2}{\frac{1}{2}} k $


Take $ k = 1\, $,

$ N_2sin = 2\, $

$ N_4sin = 4\, $, so the overall fundamental period is


$ N = 4\, $

In order to find the coefficients, we must first calculate the values of $ x[n]\, $ for four consecutive integer values of $ n\, $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn