(→System Function) |
(→System Function) |
||
Line 10: | Line 10: | ||
== System Function == | == System Function == | ||
To find the system function <math>H(s)\!</math> we use the formula: <br> <math>H(s)=\int_{-\infty}^{+\infty} h(t)e^{st}dt</math> where <math>s=j\omega\!</math>. | To find the system function <math>H(s)\!</math> we use the formula: <br> <math>H(s)=\int_{-\infty}^{+\infty} h(t)e^{st}dt</math> where <math>s=j\omega\!</math>. | ||
+ | <br> | ||
+ | <br> | ||
+ | <math>H(s)= |
Revision as of 10:04, 25 September 2008
Define a CT LTI System
$ y(t)=2x(t)-3x(t-4)\! $
Unit Impulse Response
The unit impulse response is simply the systems response to an input $ \delta(t)\! $. Thus, in our case, the unit impulse response is simply $ h(t)=2\delta(t)-3\delta(t-4)\! $
System Function
To find the system function $ H(s)\! $ we use the formula:
$ H(s)=\int_{-\infty}^{+\infty} h(t)e^{st}dt $ where $ s=j\omega\! $.
$ H(s)= $