m (Fourier Series)
(wrapping it up. saving progress)
Line 1: Line 1:
[[Homework 4_ECE301Fall2008mboutin|<< Back to Homework 4]]
 
 
Homework 4 Ben Horst:  [[HW4.1 Ben Horst _ECE301Fall2008mboutin| 4.1]]  ::  [[HW4.2 Ben Horst _ECE301Fall2008mboutin| 4.2]]  ::  [[HW4.3 Ben Horst _ECE301Fall2008mboutin| 4.3]]::  [[HW4.4 Ben Horst _ECE301Fall2008mboutin| 4.4]]::  [[HW4.5 Ben Horst _ECE301Fall2008mboutin| 4.5]]
 
----
 
 
[[Homework 4_ECE301Fall2008mboutin|<< Back to Homework 4]]
 
[[Homework 4_ECE301Fall2008mboutin|<< Back to Homework 4]]
  
Line 18: Line 14:
 
By Euler's formula, we have:
 
By Euler's formula, we have:
 
<math>
 
<math>
x(t)=2({ e^{j 6t} + -e^{-j6t} \over 2j}) + 4({ e^{j 6t} + e^{-j6t} \over 2})
+
x(t)=2({ e^{j 6t} + -e^{-j6t} \over 2j}) + 4({ e^{j3t} + e^{-j3t} \over 2})
 +
</math>
 +
 
 +
<math>
 +
x(t)=({ e^{j 6t} + -e^{-j6t} \over j}) + 2e^{j3t} + 2e^{-j3t}
 +
</math>
 +
 
 +
<math>
 +
x(t)= -e^{2 j3t} + e^{-2 j3t}  + 2e^{1 j3t} + 2e^{-1 j3t}
 +
</math>
 +
 
 +
Ordering our k's to form a proper series:
 +
 
 +
<math>
 +
x(t)= e^{(-2) j3t} + 2e^{(-1)j3t} + 0 + 2e^{(1) j3t} - e^{(2) j3t}
 +
</math>
 +
 
 +
And making sure we don't forget about  <math>a_0</math>:
 +
 
 +
<math>
 +
x(t)= (1)e^{(-2) j3t} + (2)e^{(-1)j3t} + (0)e^{(0)j3t} + (2)e^{(1) j3t} + (-1)e^{(2) j3t}
 
</math>
 
</math>

Revision as of 12:11, 25 September 2008

<< Back to Homework 4

Homework 4 Ben Horst: 4.1  :: 4.2  :: 4.3:: 4.4:: 4.5


Signal

x(t) = 2sin(6t) + 4cos(3t)

Fourier Series

$ x(t) = \sum_{k=- \infty }^ \infty a_ke^{jk\omega_0t} $

By Euler's formula, we have: $ x(t)=2({ e^{j 6t} + -e^{-j6t} \over 2j}) + 4({ e^{j3t} + e^{-j3t} \over 2}) $

$ x(t)=({ e^{j 6t} + -e^{-j6t} \over j}) + 2e^{j3t} + 2e^{-j3t} $

$ x(t)= -e^{2 j3t} + e^{-2 j3t} + 2e^{1 j3t} + 2e^{-1 j3t} $

Ordering our k's to form a proper series:

$ x(t)= e^{(-2) j3t} + 2e^{(-1)j3t} + 0 + 2e^{(1) j3t} - e^{(2) j3t} $

And making sure we don't forget about $ a_0 $:

$ x(t)= (1)e^{(-2) j3t} + (2)e^{(-1)j3t} + (0)e^{(0)j3t} + (2)e^{(1) j3t} + (-1)e^{(2) j3t} $

Alumni Liaison

EISL lab graduate

Mu Qiao