(New page: ==CT signal== The CT signal I will use is: <math>x(t) = 4cos(2t) + (3j)sin(3t)\!</math> <br>The fundamental period is 2*pi <br>we know that Wo=T/(2*pi), so: <br> Wo=2*pi)
 
Line 7: Line 7:
 
<br>we know that Wo=T/(2*pi), so:
 
<br>we know that Wo=T/(2*pi), so:
 
<br> Wo=2*pi
 
<br> Wo=2*pi
 +
==Solution==
 +
Equation to find signal coeffiecients is:
 +
<math>a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt</math>.
 +
 +
 +
The Equation to find a fourier series is:
 +
 +
 +
<math>x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}</math>
 +
 +
 +
By substituting signal into the first equation we get:
 +
 +
<math>a_0=\frac{1}{2\pi}\int_0^{2\pi}[4cos(2t) + (3j)sin(3t)]e^{0}dt</math>
 +
 +
 +
Solving this we get:
 +
 +
 +
<math>a_0=\frac{2}{\pi}\int_0^{2\pi}cos(2t)dt+\frac{3j}{2\pi}\int_0^{2\pi}sin(3t)dt</math>
 +
 +
 +
<math>a_0=\frac{1}{\pi}[sin(2t)]_0^{2\pi}-\frac{j}{2\pi}[cos(3t)]_0^{2\pi}</math>
 +
 +
 +
<math>a_0=\frac{1}{\pi}[sin(4\pi)-sin(0)]+\frac{j}{2\pi}[(cos(6\pi)-cos(0)]</math>
 +
 +
 +
<math>a_0=\frac{1}{\pi}[0]+\frac{j}{2\pi}[0]</math>
 +
 +
 +
<math>a_0=0\!</math>

Revision as of 08:26, 25 September 2008

CT signal

The CT signal I will use is:

$ x(t) = 4cos(2t) + (3j)sin(3t)\! $
The fundamental period is 2*pi
we know that Wo=T/(2*pi), so:
Wo=2*pi

Solution

Equation to find signal coeffiecients is: $ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.


The Equation to find a fourier series is:


$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $


By substituting signal into the first equation we get:

$ a_0=\frac{1}{2\pi}\int_0^{2\pi}[4cos(2t) + (3j)sin(3t)]e^{0}dt $


Solving this we get:


$ a_0=\frac{2}{\pi}\int_0^{2\pi}cos(2t)dt+\frac{3j}{2\pi}\int_0^{2\pi}sin(3t)dt $


$ a_0=\frac{1}{\pi}[sin(2t)]_0^{2\pi}-\frac{j}{2\pi}[cos(3t)]_0^{2\pi} $


$ a_0=\frac{1}{\pi}[sin(4\pi)-sin(0)]+\frac{j}{2\pi}[(cos(6\pi)-cos(0)] $


$ a_0=\frac{1}{\pi}[0]+\frac{j}{2\pi}[0] $


$ a_0=0\! $

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics