(New page: ==DT LTI system == The system is: :<math>y(n)=10x(n)+x(n-1)</math>) |
|||
Line 1: | Line 1: | ||
==DT LTI system == | ==DT LTI system == | ||
The system is: | The system is: | ||
− | :<math>y(n)= | + | :<math>y(n)=4x(n)+x(n-3)</math> |
+ | ==unit impulse response== | ||
+ | Obtain the unit impulse response h(t) and the system function H(s) of your system. : | ||
+ | :<math>d (n) => System =>4 d (n) + d(n-3)\,</math> | ||
+ | :<math>h(t)=4d(n) +d(n-3)\,</math> | ||
+ | :<math>H(z)=\sum_{-\infty}^{\infty} h(n)e^{-s n}</math> | ||
+ | :<math>H(z)=\sum_{-\infty}^{\infty} (4d(n) +d(n-3))e^{-z n}</math> | ||
+ | |||
+ | Using the shifting property, | ||
+ | :<math>H(z)=10 e^{0 z} + e^{-1 z} \, </math> | ||
+ | :<math>H(z)=10 + e^{- z} \, </math>, where z =jw |
Revision as of 06:08, 25 September 2008
DT LTI system
The system is:
- $ y(n)=4x(n)+x(n-3) $
unit impulse response
Obtain the unit impulse response h(t) and the system function H(s) of your system. :
- $ d (n) => System =>4 d (n) + d(n-3)\, $
- $ h(t)=4d(n) +d(n-3)\, $
- $ H(z)=\sum_{-\infty}^{\infty} h(n)e^{-s n} $
- $ H(z)=\sum_{-\infty}^{\infty} (4d(n) +d(n-3))e^{-z n} $
Using the shifting property,
- $ H(z)=10 e^{0 z} + e^{-1 z} \, $
- $ H(z)=10 + e^{- z} \, $, where z =jw