(New page: ==DT LTI system == The system is: :<math>y(n)=10x(n)+x(n-1)</math>)
 
Line 1: Line 1:
 
==DT LTI system ==
 
==DT LTI system ==
 
The system is:
 
The system is:
:<math>y(n)=10x(n)+x(n-1)</math>
+
:<math>y(n)=4x(n)+x(n-3)</math>
 +
==unit impulse response==
 +
Obtain the unit impulse response h(t) and the system function H(s) of your system. :
 +
:<math>d (n) => System =>4 d (n) + d(n-3)\,</math>
 +
:<math>h(t)=4d(n) +d(n-3)\,</math>
 +
:<math>H(z)=\sum_{-\infty}^{\infty} h(n)e^{-s n}</math>
 +
:<math>H(z)=\sum_{-\infty}^{\infty} (4d(n) +d(n-3))e^{-z n}</math>
 +
 
 +
Using the shifting property,
 +
:<math>H(z)=10 e^{0 z} + e^{-1 z} \, </math>
 +
:<math>H(z)=10 + e^{- z} \, </math>, where z =jw

Revision as of 06:08, 25 September 2008

DT LTI system

The system is:

$ y(n)=4x(n)+x(n-3) $

unit impulse response

Obtain the unit impulse response h(t) and the system function H(s) of your system. :

$ d (n) => System =>4 d (n) + d(n-3)\, $
$ h(t)=4d(n) +d(n-3)\, $
$ H(z)=\sum_{-\infty}^{\infty} h(n)e^{-s n} $
$ H(z)=\sum_{-\infty}^{\infty} (4d(n) +d(n-3))e^{-z n} $

Using the shifting property,

$ H(z)=10 e^{0 z} + e^{-1 z} \, $
$ H(z)=10 + e^{- z} \, $, where z =jw

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics