(New page: ==LTI System== <math>y(t)=2x(t)+x(t+2)</math> ==Unit Impulse and System Function== The unit impulse is the systems response to an input of the function <math>\delta(t)</math>. <math>x(...)
 
(Unit Impulse and System Function)
 
Line 16: Line 16:
  
  
<math>H(s)=(2+e^{2j\omega}</math>
+
<math>H(s)=2+e^{2j\omega}</math>
  
 
==Response to a Signal==
 
==Response to a Signal==

Latest revision as of 05:42, 25 September 2008

LTI System

$ y(t)=2x(t)+x(t+2) $

Unit Impulse and System Function

The unit impulse is the systems response to an input of the function $ \delta(t) $.

$ x(t)=\delta(t) $

$ h(t)=2\delta(t)+\delta(t+2) $ is the Unit Unit Impulse Response.

$ H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $ is the equation used to find the system response.

$ H(s)=\int_{-\infty}^\infty (2\delta(t)+\delta(t+2))e^{-j\omega\tau}d\tau $


$ H(s)=2+e^{2j\omega} $

Response to a Signal

My signal in Part 1 was: $ x(t)=sin(\pi t) + cos(2\pi t) $

$ x(t)=sin(\pi t) + cos(2\pi t) = \frac{1}{j}e^{-j}+e^{j}+ \frac{1}{2}e^{2j}+ \frac{1}{2}e^{-2j} $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin