(Solution)
(Solution)
Line 14: Line 14:
 
<math>\omega_0 = \pi</math>
 
<math>\omega_0 = \pi</math>
  
<math>a_1=1/2 </math>
+
<math>a_1=\frac{1}{2} </math>
  
<math>a_2=1/2j </math>
+
<math>a_2=\frac{1}{2j} </math>
 +
 
 +
else <math>a_k</math> equals 0

Revision as of 05:20, 25 September 2008

Fourier Transform

Let $ x(t)=sin(\pi t) + cos(2\pi t) $

Remember that the formula for CT Fourier Series are:

$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $

$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.

Solution

$ x(t)= \frac{e^{\pi jt}+e^{-\pi jt}}{2} + \frac{e^{2\pi jt}+e^{-2\pi jt}}{2j} $

$ \omega_0 = \pi $

$ a_1=\frac{1}{2} $

$ a_2=\frac{1}{2j} $

else $ a_k $ equals 0

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood