(→Solution) |
(→Solution) |
||
Line 14: | Line 14: | ||
<math>\omega_0 = \pi</math> | <math>\omega_0 = \pi</math> | ||
− | <math>a_1=1 | + | <math>a_1=\frac{1}{2} </math> |
− | <math>a_2=1 | + | <math>a_2=\frac{1}{2j} </math> |
+ | |||
+ | else <math>a_k</math> equals 0 |
Revision as of 05:20, 25 September 2008
Fourier Transform
Let $ x(t)=sin(\pi t) + cos(2\pi t) $
Remember that the formula for CT Fourier Series are:
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.
Solution
$ x(t)= \frac{e^{\pi jt}+e^{-\pi jt}}{2} + \frac{e^{2\pi jt}+e^{-2\pi jt}}{2j} $
$ \omega_0 = \pi $
$ a_1=\frac{1}{2} $
$ a_2=\frac{1}{2j} $
else $ a_k $ equals 0