Line 3: Line 3:
 
<math>x(t) = 1+\frac {1}{2j} (e^{j\omega_0 t}-e^{-j\omega_0 t})+\frac{1}{2}(e^{j(2\omega_0 t+\frac {\pi}{4})}+e^{-j(2\omega_0 t+\frac {\pi}{4})})</math>
 
<math>x(t) = 1+\frac {1}{2j} (e^{j\omega_0 t}-e^{-j\omega_0 t})+\frac{1}{2}(e^{j(2\omega_0 t+\frac {\pi}{4})}+e^{-j(2\omega_0 t+\frac {\pi}{4})})</math>
  
<math>= \frac{e^{3j\pi t}}{2} + \frac{e^{-3j\pi t}}{2} + \frac{e^{4j\pi t}}{2j} - \frac{e^{-4j\pi t}}{2j} \,</math>
+
<math>x(t) = 1+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+\frac{1}{2}e^{j(2\omega_0 t+\frac {\pi}{4})}++\frac {1}{2j}e^{-j(2\omega_0 t+\frac {\pi}{4})}</math>
 +
 
  
 
I take <math>\omega_o \,</math> as <math>\pi \,</math> since both functions have a period based on it.
 
I take <math>\omega_o \,</math> as <math>\pi \,</math> since both functions have a period based on it.

Revision as of 03:56, 25 September 2008

CT Periodic Signal : $ x(t) = 1+\sin \omega_0 t + \cos(2\omega_0 t+ \frac{\pi}{4}) $

$ x(t) = 1+\frac {1}{2j} (e^{j\omega_0 t}-e^{-j\omega_0 t})+\frac{1}{2}(e^{j(2\omega_0 t+\frac {\pi}{4})}+e^{-j(2\omega_0 t+\frac {\pi}{4})}) $

$ x(t) = 1+\frac {1}{2j} e^{j\omega_0 t}-\frac {1}{2j}e^{-j\omega_0 t}+\frac{1}{2}e^{j(2\omega_0 t+\frac {\pi}{4})}++\frac {1}{2j}e^{-j(2\omega_0 t+\frac {\pi}{4})} $


I take $ \omega_o \, $ as $ \pi \, $ since both functions have a period based on it.

The following is the coefficient of the signal:

$ a_3 = \frac{1}{2}\, $

$ a_{-3} = \frac{1}{2}\, $

$ a_{4} = \frac{1}{2j}\, $

$ a_{-4} = -\frac{1}{2j}\, $

We can write the function in the following illiterations:

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $ where

$ a_3 = a_{-3} = \frac{1}{2}\, $

$ a_{4} = \frac{1}{2j} = -a_{-4}\, $

$ a_k = 0 , k \neq 3,-3,4,-4\, $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch