(New page: == A CT-LTI System == <math>y(t) = 10x(t)\,</math> == Unit Impulse == <math>x(t) = \delta(t)\,</math> <math>h(t) = 10 \delta(t)\,</math> == Frequency Response == <math>y(t) = \int^{\in...)
 
(Response of the CT system defiend in Q1)
Line 27: Line 27:
 
CT Periodic Signal : <math>x(t) = \cos(3\pi t) + \sin(4\pi t)\,</math>
 
CT Periodic Signal : <math>x(t) = \cos(3\pi t) + \sin(4\pi t)\,</math>
  
<math>x(t) = \cos(3\pi t) + \sin(4\pi t)\,</math>
+
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math>
  
<math>x(t) = \frac{e^{3\pi jt} + e^{-3\pi jt} }{2} + \frac{e^{4\pi jt} - e^{-4\pi jt} }{2j}\,</math>
+
<math>y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\,</math>
  
<math>x(t) = \frac{10e^{3\pi jt} + 10e^{-3\pi jt} }{2} + \frac{10e^{4\pi jt} - 10e^{-4\pi jt} }{2j}\,</math>
+
<math>y(t) = \sum^{\infty}_{k = -\infty} a_k (10) e^{jk\pi t}\,</math>
  
<math>x(t) = 10\frac{e^{3\pi jt} + e^{-3\pi jt} }{2} + 10\frac{e^{4\pi jt} - e^{-4\pi jt} }{2j}\,</math>
+
<math>y(t) = 10\sum^{\infty}_{k = -\infty} a_k  e^{jk\pi t}\,</math>
  
<math>x(t) = 10\cos(3\pi t) + 10\sin(4\pi t)\,</math>
+
<math>y(t) = 10(\cos(3\pi t) + \sin(4\pi t))\,</math>
 +
 
 +
<math>y(t) = 10\cos(3\pi t) + 10\sin(4\pi t)\,</math>

Revision as of 17:54, 24 September 2008

A CT-LTI System

$ y(t) = 10x(t)\, $

Unit Impulse

$ x(t) = \delta(t)\, $

$ h(t) = 10 \delta(t)\, $

Frequency Response

$ y(t) = \int^{\infty}_{-\infty} h(t) * x(t) dt\, $ where $ x(t) = e^{jwt} \, $

$ y(t) = \int^{\infty}_{-\infty} 10 \delta(t) * e^{jwt} dt\, $

$ y(t) = \int^{\infty}_{-\infty} 10 \delta(r) e^{jw(t-r} dr\, $

$ y(t) = e^{jwt} \int^{\infty}_{-\infty} 10 \delta(r) e^{-jwr} dr\, $

$ H(s) = \int^{\infty}_{-\infty} 10 \delta(r) e^{-jwr} dr\, $

$ H(s) = 10 e^{-jw0}\, $

$ H(s) = 10\, $

Response of the CT system defiend in Q1

CT Periodic Signal : $ x(t) = \cos(3\pi t) + \sin(4\pi t)\, $

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $

$ y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\, $

$ y(t) = \sum^{\infty}_{k = -\infty} a_k (10) e^{jk\pi t}\, $

$ y(t) = 10\sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $

$ y(t) = 10(\cos(3\pi t) + \sin(4\pi t))\, $

$ y(t) = 10\cos(3\pi t) + 10\sin(4\pi t)\, $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch