(Response to a Signal from Question 1)
(Response to a Signal from Question 1)
Line 27: Line 27:
 
<math>y(t)=(1+j)e^{-3jt}-\frac{1+j}{2}e^{-3j(t-2)}-\frac{7}{j}e^{-2jt}+\frac{7}{2j}e^{-2j(t-2)}+\frac{7}{j}e^{2jt}-\frac{7}{2j}e^{2j(t-2)}+(1+j)e^{3jt}-\frac{1+j}{2}e^{3j(t-2)}</math>
 
<math>y(t)=(1+j)e^{-3jt}-\frac{1+j}{2}e^{-3j(t-2)}-\frac{7}{j}e^{-2jt}+\frac{7}{2j}e^{-2j(t-2)}+\frac{7}{j}e^{2jt}-\frac{7}{2j}e^{2j(t-2)}+(1+j)e^{3jt}-\frac{1+j}{2}e^{3j(t-2)}</math>
  
It is fairly easy to see that the final <math>y(t)</math> is simply the weighed sum of the doubled input (<math>y(t)=2x(t)</math) and the shifted input (<math>y(t)=x(t-2)</math>).
+
It is fairly easy to see that the final <math>y(t)</math> is simply the weighed sum of the doubled input (<math>y(t)=2x(t)</math>) and the shifted input (<math>y(t)=x(t-2)</math>).

Revision as of 05:39, 25 September 2008

A Continuous Time, Linear, Time-Invariant System

Consider the system $ y(t)=2x(t)-x(t-2) $.

Unit Impulse Response

Let $ x(t)=\delta(t) $. Then $ h(t)=2\delta(t)-\delta(t-2) $.

System Function

As discussed in class, the system function is

$ H(j\omega)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $

In this case, we can apply the sifting property to arrive at the system function quite easily. After applying the property, we arrive at $ H(j\omega)=2-e^{-2j\omega} $. One might recognize this is the Laplace transform of the impulse response.

Response to a Signal from Question 1

I will use my signal from Question 1.

$ x(t)=7\sin(2t)+(1+j)\cos(3t)=\frac{1+j}{2}e^{-3jt}-\frac{7}{2j}e^{-2jt}+\frac{7}{2j}e^{2jt}+\frac{1+j}{2}e^{3jt} $

Since we have represented the original signal as a sum of complex exponentials, we simply have to multiply each term of the original input signal by $ H(j\omega) $ to obtain the corresponding term in the output.

$ y(t)=H(jw)x(t) $

$ y(t)=(2-e^{6j})(\frac{1+j}{2}e^{-3jt})-(2-e^{4j})(\frac{7}{2j}e^{-2jt})+(2-e^{-4j})(\frac{7}{2j}e^{2jt})+(2-e^{-6j})(\frac{1+j}{2}e^{3jt}) $

Which a little math becomes

$ y(t)=(1+j)e^{-3jt}-\frac{1+j}{2}e^{-3j(t-2)}-\frac{7}{j}e^{-2jt}+\frac{7}{2j}e^{-2j(t-2)}+\frac{7}{j}e^{2jt}-\frac{7}{2j}e^{2j(t-2)}+(1+j)e^{3jt}-\frac{1+j}{2}e^{3j(t-2)} $

It is fairly easy to see that the final $ y(t) $ is simply the weighed sum of the doubled input ($ y(t)=2x(t) $) and the shifted input ($ y(t)=x(t-2) $).

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett