Line 1: Line 1:
 
==DT LTI System==
 
==DT LTI System==
  
<math>y[n] = \sum_{n=-\infty}^{\infty}x[n] \; \;</math> &nbsp; &nbsp; (DT integral)
+
<math>y[n] = \sum_{n=-\infty}^{\infty}\frac{1}{2}x[n] \; \;</math> &nbsp; &nbsp; (DT integral)
  
 
==h[n]==
 
==h[n]==
  
<math>h[n] = \sum_{n=-\infty}^{\infty}\delta [n] = u[n]</math>
+
<math>h[n] = \sum_{n=-\infty}^{\infty}\frac{1}{2}\delta [n] = \frac{1}{2}u[n]</math>
  
 
==H(z)==
 
==H(z)==
  
<math>H(z) = \sum_{m=-\infty}^{\infty}h[m] e^{-j \omega m} = \sum_{m=-\infty}^{\infty} u[m] e^{-j \omega m} = \sum_{m=0}^{\infty} e^{-j \omega m} = \sum_{m=0}^{\infty} (\frac{1}{e^{j \omega}})^m</math>
+
<math>H(z) = \sum_{m=-\infty}^{\infty}h[m] e^{-j \omega m} = \sum_{m=-\infty}^{\infty} \frac{1}{2}u[m] e^{-j \omega m} = \sum_{m=0}^{\infty} \frac{1}{2}e^{-j \omega m} = \sum_{m=0}^{\infty} (\frac{1}{2 e^{j \omega}})^m</math>

Revision as of 18:50, 23 September 2008

DT LTI System

$ y[n] = \sum_{n=-\infty}^{\infty}\frac{1}{2}x[n] \; \; $     (DT integral)

h[n]

$ h[n] = \sum_{n=-\infty}^{\infty}\frac{1}{2}\delta [n] = \frac{1}{2}u[n] $

H(z)

$ H(z) = \sum_{m=-\infty}^{\infty}h[m] e^{-j \omega m} = \sum_{m=-\infty}^{\infty} \frac{1}{2}u[m] e^{-j \omega m} = \sum_{m=0}^{\infty} \frac{1}{2}e^{-j \omega m} = \sum_{m=0}^{\infty} (\frac{1}{2 e^{j \omega}})^m $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva