Line 9: Line 9:
 
==H(z)==
 
==H(z)==
  
<math>H(z) = \sum_{m=-\infty}^{\infty}h[m] e^{-j \omega m} = \sum_{m=-\infty}^{\infty} u[m] e^{-j \omega m} = \sum_{m=0}^{\infty} e^{-j \omega m}</math>
+
<math>H(z) = \sum_{m=-\infty}^{\infty}h[m] e^{-j \omega m} = \sum_{m=-\infty}^{\infty} u[m] e^{-j \omega m} = \sum_{m=0}^{\infty} e^{-j \omega m} = \sum_{m=0}^{\infty} (\frac{1}{e^{j \omega}})^m</math>

Revision as of 18:47, 23 September 2008

DT LTI System

$ y[n] = \sum_{n=-\infty}^{\infty}x[n] \; \; $     (DT integral)

h[n]

$ h[n] = \sum_{n=-\infty}^{\infty}\delta [n] = u[n] $

H(z)

$ H(z) = \sum_{m=-\infty}^{\infty}h[m] e^{-j \omega m} = \sum_{m=-\infty}^{\infty} u[m] e^{-j \omega m} = \sum_{m=0}^{\infty} e^{-j \omega m} = \sum_{m=0}^{\infty} (\frac{1}{e^{j \omega}})^m $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch