Line 1: Line 1:
 
==DT LTI System==
 
==DT LTI System==
  
<math>y[n] = \sum_{-\infty}^{\infty}x[n] \; \;</math> &nbsp; &nbsp; (DT integral)
+
<math>y[n] = \sum_{n=-\infty}^{\infty}x[n] \; \;</math> &nbsp; &nbsp; (DT integral)
  
 
==h[n]==
 
==h[n]==
  
<math>h[n] = \sum_{-\infty}^{\infty}\delta [n] = u[n]</math>
+
<math>h[n] = \sum_{n=-\infty}^{\infty}\delta [n] = u[n]</math>
 +
 
 +
==H(z)==
 +
 
 +
<math>H(z) = </math>

Revision as of 18:40, 23 September 2008

DT LTI System

$ y[n] = \sum_{n=-\infty}^{\infty}x[n] \; \; $     (DT integral)

h[n]

$ h[n] = \sum_{n=-\infty}^{\infty}\delta [n] = u[n] $

H(z)

$ H(z) = $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn