Line 10: Line 10:
  
 
<math>a_{k} = \frac{1}{4} \sum_{n=0}^{3} x[n] e^{-jk \frac{\pi}{2} n}</math>
 
<math>a_{k} = \frac{1}{4} \sum_{n=0}^{3} x[n] e^{-jk \frac{\pi}{2} n}</math>
 +
 +
and:
 +
 +
<math>a[0] = 0
 +
a[1] = 1
 +
a[2] = 2
 +
a[3] = 1
 +
a[4] = 0</math>
 +
 +
Therefore:
 +
 +
<math>a_{0} = \frac{1}{4} \sum_{n=0}^{3} x[n]</math>

Revision as of 16:48, 23 September 2008

Periodic DT Signal

The following plot shows two periods of the periodic DT signal $ x[n] $, a sawtooth:

SawDTJP ECE301Fall2008mboutin.jpg

Fourier Series Coefficients

$ a_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk \frac{2 \pi}{N} n} $

From the plot above, N = 4:

$ a_{k} = \frac{1}{4} \sum_{n=0}^{3} x[n] e^{-jk \frac{\pi}{2} n} $

and:

$ a[0] = 0 a[1] = 1 a[2] = 2 a[3] = 1 a[4] = 0 $

Therefore:

$ a_{0} = \frac{1}{4} \sum_{n=0}^{3} x[n] $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal