Line 8: Line 8:
  
 
<math>h[n]=(2n-3)^n\delta{[n-5]}</math>
 
<math>h[n]=(2n-3)^n\delta{[n-5]}</math>
 +
 +
Then the system function F[z] is obtained by
 +
 +
<math>F[z]=\sum_{m= - \infty}^{\infty}h[m]z^{-m}</math>

Revision as of 08:31, 25 September 2008

Define a DT LTI System

Let the DT LTI system be: $ y[n]=(2n-3)^nu[n-5] $

Obtain the Unit Impulse Response h[n] and the System Function F[z] of the system

First to obtain the unit impulse response h[n] we plug in $ \delta{[n]} $ into our y[n].

$ h[n]=(2n-3)^n\delta{[n-5]} $

Then the system function F[z] is obtained by

$ F[z]=\sum_{m= - \infty}^{\infty}h[m]z^{-m} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn