(unit impulse response)
(unit impulse response)
Line 11: Line 11:
  
 
Using the shifting property,
 
Using the shifting property,
:<math>H(s)=
+
:<math>H(s)=10 e^{0 s} + e^{-1 s} \, </math>
 +
:<math>H(s)=10 + e^{- s} \, </math>

Revision as of 05:50, 25 September 2008

CT LTI system

The system is:

$ y(t)=10x(t)+x(t-1) $

unit impulse response

Obtain the unit impulse response h(t) and the system function H(s) of your system. :

$ d (t) => System =>10 d (t) + d(t-1)\, $
$ h(t)=10d(t) +d(t-1)\, $
$ H(s)=\int_{-\infty}^{\infty} h(t)e^{-s t}dt $
$ H(s)=\int_{-\infty}^{\infty} (10d(t) +d(t-1))e^{-s t}dt $

Using the shifting property,

$ H(s)=10 e^{0 s} + e^{-1 s} \, $
$ H(s)=10 + e^{- s} \, $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva