(New page: ==CT Periodic Signal== :<math>x(t)=2cos(\dfrac{\pi}{2}t) \,</math> :<math>T=\dfrac{2\pi}{\pi/2} \,</math> :<math>T=4 \,</math> :<math>x(t)=2\dfrac{e^{.5 j t \pi}-e^{-.5 j t \pi}}{2}</math>...)
 
(CT Periodic Signal)
Line 1: Line 1:
 
==CT Periodic Signal==
 
==CT Periodic Signal==
:<math>x(t)=2cos(\dfrac{\pi}{2}t) \,</math>
+
:<math>x(t)=2cos(\dfrac{\pi}{2}t)+3 \,</math>
 
:<math>T=\dfrac{2\pi}{\pi/2} \,</math>
 
:<math>T=\dfrac{2\pi}{\pi/2} \,</math>
 
:<math>T=4 \,</math>
 
:<math>T=4 \,</math>
:<math>x(t)=2\dfrac{e^{.5 j t \pi}-e^{-.5 j t \pi}}{2}</math>
+
:<math>x(t)=2\dfrac{e^{.5 j t \pi}-e^{-.5 j t \pi}}{2}+3</math>
:<math>x(t)=e^{.5 j t \pi}-e^{-.5 j t \pi} \, </math>
+
:<math>x(t)=e^{.5 j t \pi}-e^{-.5 j t \pi}+3e^{.5 \pi*0} \, </math>
:<math>ak=\dfrac{1}{T}\int_0^T x(t) e^{-jk\dfrac{2\pi}{T}t} dt </math>
+
<pre>
:<math>a1=\dfrac{1}{4}\int_0^4 x(t) e^{-j\dfrac{2\pi}{4}t} dt </math>
+
a-1=1
:<math>a1=\dfrac{1}{4}\int_0^4 (e^{\dfrac{\pi}{2} j t }-e^{-\dfrac{\pi}{2} j t }) e^{-jt\dfrac{\pi}{2}} dt </math>
+
a0=3
:<math>a1=\dfrac{1}{4}\int_0^4 -e^{-\pi j t } dt </math>
+
a1=1
:<math>a1=\dfrac{1}{4}[\dfrac{e^{-\pi j t }}{\pi}]|_0^4 </math>
+
a2=0
 +
a3=0

Revision as of 11:20, 23 September 2008

CT Periodic Signal

$ x(t)=2cos(\dfrac{\pi}{2}t)+3 \, $
$ T=\dfrac{2\pi}{\pi/2} \, $
$ T=4 \, $
$ x(t)=2\dfrac{e^{.5 j t \pi}-e^{-.5 j t \pi}}{2}+3 $
$ x(t)=e^{.5 j t \pi}-e^{-.5 j t \pi}+3e^{.5 \pi*0} \, $
a-1=1
a0=3
a1=1
a2=0
a3=0

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman