(New page: ==DT Perodic function== <math>x[n]=5sin(pi n +pi/6)/, </math>)
 
(DT Perodic function)
Line 1: Line 1:
 
==DT Perodic function==
 
==DT Perodic function==
<math>x[n]=5sin(pi n +pi/6)/, </math>
+
 
 +
Find the Fourier Series coefficients of x[n]
 +
:<math>x[n]=5cos(5/2\pi n +\pi) \, </math>
 +
:<math>N=\dfrac{2\pi}{5/2\pi}K </math>, where K is the smallest integer, that makes N an integer.
 +
:<math> K = 5,N = 4\,</math>
 +
:<math>x[n]=5cos(5/2 j \pi n +\pi) = \dfrac{5(e^{5/2 j \pi n+\pi}-e^{-5/2\pi n-\pi})}{2} \,</math>
 +
:<math>x[n]= \dfrac{5}{2}(e^{5/2\pi n}e^{\pi}-e^{-5/2\pi n}e^{-\pi}) \,</math>
 +
:<math>e^{\pi}=-1,e^{-\pi}=1 \,</math>
 +
:<math>x[n]= \dfrac{5}{2}(e^{-5/2\pi n}-e^{5/2\pi n}) \,</math>

Revision as of 09:19, 23 September 2008

DT Perodic function

Find the Fourier Series coefficients of x[n]

$ x[n]=5cos(5/2\pi n +\pi) \, $
$ N=\dfrac{2\pi}{5/2\pi}K $, where K is the smallest integer, that makes N an integer.
$ K = 5,N = 4\, $
$ x[n]=5cos(5/2 j \pi n +\pi) = \dfrac{5(e^{5/2 j \pi n+\pi}-e^{-5/2\pi n-\pi})}{2} \, $
$ x[n]= \dfrac{5}{2}(e^{5/2\pi n}e^{\pi}-e^{-5/2\pi n}e^{-\pi}) \, $
$ e^{\pi}=-1,e^{-\pi}=1 \, $
$ x[n]= \dfrac{5}{2}(e^{-5/2\pi n}-e^{5/2\pi n}) \, $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett