Line 1: Line 1:
 
DT signal:
 
DT signal:
<br>
+
<br><br>
 
<math>X[n] = 6\cos(3 \pi n + \pi)\,</math><br><br>
 
<math>X[n] = 6\cos(3 \pi n + \pi)\,</math><br><br>
<math>N = \frac{2\pi}{3\pi} K \,</math><br>
+
<math>N = \frac{2\pi}{3\pi} K \,</math><br><br>
 
Where K is the smallest integer that makes N an integer.
 
Where K is the smallest integer that makes N an integer.
K would be 3.<br>
+
K would be 3.<br><br>
 
<math>N = \frac{2\pi}{3\pi} 3 \,</math><br><br>
 
<math>N = \frac{2\pi}{3\pi} 3 \,</math><br><br>
 
<math>N = 2 \,</math><br>
 
<math>N = 2 \,</math><br>

Revision as of 14:45, 22 September 2008

DT signal:

$ X[n] = 6\cos(3 \pi n + \pi)\, $

$ N = \frac{2\pi}{3\pi} K \, $

Where K is the smallest integer that makes N an integer. K would be 3.

$ N = \frac{2\pi}{3\pi} 3 \, $

$ N = 2 \, $


$ X[0] = -6 \, $
$ X[1] = 6 \, $
$ X[2] = -6 \, $
$ X[-1] = 6 \, $


$ a_k = \frac{1}{N} \sum^{N-1}_{n = 0} X[n] e^{-jk\frac{2\pi}{N} n} $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal