Line 1: | Line 1: | ||
DT signal: | DT signal: | ||
<br> | <br> | ||
− | <math>X | + | <math>X[n] = 6\cos(3 \pi n + \pi)\,</math><br> |
<math>N = \frac{2\pi}{3\pi} K \,</math><br> | <math>N = \frac{2\pi}{3\pi} K \,</math><br> | ||
Where K is the smallest integer that makes N an integer. | Where K is the smallest integer that makes N an integer. | ||
+ | K would be 3.<br> | ||
+ | <math>N = \frac{2\pi}{3\pi} 3 \,</math><br> | ||
+ | <math>N = 2 \,</math><br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <math>X[0] = -6 \,</math><br> | ||
+ | <math>X[1] = 6 \,</math><br> | ||
+ | <math>X[2] = -6 \,</math><br> | ||
+ | <math>X[-1] = 6 \,</math><br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <math>a_k = \frac{1}{N} \sum^{N-1}_{n = 0} X[n] e^{-jk\frac{2\pi}{N} n}</math><br> |
Revision as of 14:44, 22 September 2008
DT signal:
$ X[n] = 6\cos(3 \pi n + \pi)\, $
$ N = \frac{2\pi}{3\pi} K \, $
Where K is the smallest integer that makes N an integer.
K would be 3.
$ N = \frac{2\pi}{3\pi} 3 \, $
$ N = 2 \, $
$ X[0] = -6 \, $
$ X[1] = 6 \, $
$ X[2] = -6 \, $
$ X[-1] = 6 \, $
$ a_k = \frac{1}{N} \sum^{N-1}_{n = 0} X[n] e^{-jk\frac{2\pi}{N} n} $