Line 8: | Line 8: | ||
<math>a_{-1} = 3\,</math><br> | <math>a_{-1} = 3\,</math><br> | ||
<math>a_2 = 4\,</math><br> | <math>a_2 = 4\,</math><br> | ||
− | <math>a_{-2} = 4\,</math><br> | + | <math>a_{-2} = -4\,</math><br> |
− | To calculate <math>a_k\,</math>, we use this equation: | + | To calculate <math>a_k\,</math>, we use this equation with <math>\omega_0\,</math> value as 2: |
− | <math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\omega_0 t}\,</math><br> | + | <br><math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\omega_0 t}\,</math><br> |
+ | Then you will find the value of <math>a_k \,</math> is zero. |
Revision as of 19:08, 21 September 2008
CT Signal:
$ X(t) = 6\cos(2t) + 8\sin(4t)\, $
$ X(t) = 6\frac{e^{j2t}+e^{-j2t}}{2} + 8\frac{e^{j4t}-e^{-j4t}}{2}\, $
$ X(t) = 3e^{j2t}+3e^{-j2t} + 4e^{j4t}-4e^{-j4t}\, $
With this expression we can conclude:
$ a_1 = 3\, $
$ a_{-1} = 3\, $
$ a_2 = 4\, $
$ a_{-2} = -4\, $
To calculate $ a_k\, $, we use this equation with $ \omega_0\, $ value as 2:
$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\omega_0 t}\, $
Then you will find the value of $ a_k \, $ is zero.