(New page: CT Periodic Signal : <math>x(t) = \cos(3\pi t) + \sin(4\pi t)\,</math> <math>x(t) = \cos(3\pi t) + \sin(4\pi t)\,</math> <math>= \frac{e^{3j\pi t}}{2} + \frac{e^{-3j\pi t}}{2} + \frac{e^...)
 
Line 25: Line 25:
 
<math>a_{4} = \frac{1}{2j} = -a_{-4}\,</math>
 
<math>a_{4} = \frac{1}{2j} = -a_{-4}\,</math>
  
<math>a_k = 0\,</math>
+
<math>a_k = 0 , k \neq 3,-3,4,-4\,</math>

Revision as of 18:39, 21 September 2008

CT Periodic Signal : $ x(t) = \cos(3\pi t) + \sin(4\pi t)\, $

$ x(t) = \cos(3\pi t) + \sin(4\pi t)\, $

$ = \frac{e^{3j\pi t}}{2} + \frac{e^{-3j\pi t}}{2} + \frac{e^{4j\pi t}}{2j} - \frac{e^{-4j\pi t}}{2j} \, $

I take $ \omega_o \, $ as $ \pi \, $ since both functions have a period based on it.

The following is the coefficient of the signal:

$ a_3 = \frac{1}{2}\, $

$ a_{-3} = \frac{1}{2}\, $

$ a_{4} = \frac{1}{2j}\, $

$ a_{-4} = -\frac{1}{2j}\, $

We can write the function in the following illiterations:

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $ where

$ a_3 = a_{-3} = \frac{1}{2}\, $

$ a_{4} = \frac{1}{2j} = -a_{-4}\, $

$ a_k = 0 , k \neq 3,-3,4,-4\, $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva