Line 27: Line 27:
 
<math> H(s) = \int_{-\infty}^{\infty} e^{-j*w*k} * 2\delta(\tau) d\tau </math>
 
<math> H(s) = \int_{-\infty}^{\infty} e^{-j*w*k} * 2\delta(\tau) d\tau </math>
  
<math> 2*1 = 2 </math>
+
2*1 = 2
  
<math> H(s) = 2 </math>
+
H(s) = 2

Revision as of 16:22, 25 September 2008

CT LTI sytem

An example system would be:

y(t) = 2*x(t)


Part A: The unit impulse response and system function H(s)

The unit impulse response:

$ x(t) \to \delta(t) * h(t) = 2*\delta(t) $


The system function, H(s) derivation:

$ y(t) = \int_{-\infty}^{\infty} x(\tau) * h(\tau) *d\tau $

$ y(t) = \int_{-\infty}^{\infty} e^{-j*w(t-k)} * 2\delta(\tau) *d\tau $


$ y(t) = e^{j*w*t} \int_{-\infty}^{\infty} e^{-j*w*k} * 2\delta(\tau) * d\tau $


$ H(s) = \int_{-\infty}^{\infty} e^{-j*w*k} * 2\delta(\tau) d\tau $

2*1 = 2

H(s) = 2

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn