Line 8: Line 8:
  
 
<math> ak = \frac{1}{T} \int_{0}^{T} x(t) * e^{-j*k} * \frac{2*\pi}{T} *dt </math>
 
<math> ak = \frac{1}{T} \int_{0}^{T} x(t) * e^{-j*k} * \frac{2*\pi}{T} *dt </math>
 +
 +
  
 
<math> x(t) = cos(2* \pi * t) * cos(4* \pi * t) </math>
 
<math> x(t) = cos(2* \pi * t) * cos(4* \pi * t) </math>
 +
  
 
<math> = \frac{e^{j*2*\pi*t} + e^{-j*2*\pi*t}}{2} </math>
 
<math> = \frac{e^{j*2*\pi*t} + e^{-j*2*\pi*t}}{2} </math>
 +
  
 
<math> = \frac{1*e^{j*6*\pi*t}}{4} + \frac{e^{-j*2*\pi*t}}{4} + \frac{e^{j*2*\pi*t}}{4} + \frac{e^{-j*6*\pi*t}}{4} </math>
 
<math> = \frac{1*e^{j*6*\pi*t}}{4} + \frac{e^{-j*2*\pi*t}}{4} + \frac{e^{j*2*\pi*t}}{4} + \frac{e^{-j*6*\pi*t}}{4} </math>
 +
 +
 +
K = 3            K= -1        K= 1          K= -3
 +
 +
 +
<math> a3 = \frac{1}{4}          a-1 = \frac{1}{4}        a1 = \frac{1}{4}        a-3 = \frac{1}{4}  </math>

Revision as of 16:37, 23 September 2008

Define a Periodic CT signal and compute its Fourier series coefficients

Consider the following CT signal:


x(t) such that

$ ak = \frac{1}{T} \int_{0}^{T} x(t) * e^{-j*k} * \frac{2*\pi}{T} *dt $


$ x(t) = cos(2* \pi * t) * cos(4* \pi * t) $


$ = \frac{e^{j*2*\pi*t} + e^{-j*2*\pi*t}}{2} $


$ = \frac{1*e^{j*6*\pi*t}}{4} + \frac{e^{-j*2*\pi*t}}{4} + \frac{e^{j*2*\pi*t}}{4} + \frac{e^{-j*6*\pi*t}}{4} $


K = 3 K= -1 K= 1 K= -3


$ a3 = \frac{1}{4} a-1 = \frac{1}{4} a1 = \frac{1}{4} a-3 = \frac{1}{4} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang