Line 3: Line 3:
  
 
Consider the following CT signal:
 
Consider the following CT signal:
 +
  
 
x(t) such that
 
x(t) such that
 +
 +
<math> ak = \frac{1}{T} \int_{0}^{T} x(t) * e^{-j*k} * \frac{2*\pi}{T} *dt </math>
  
 
<math> x(t) = cos(2* \pi * t) * cos(4* \pi * t) </math>
 
<math> x(t) = cos(2* \pi * t) * cos(4* \pi * t) </math>

Revision as of 16:35, 23 September 2008

Define a Periodic CT signal and compute its Fourier series coefficients

Consider the following CT signal:


x(t) such that

$ ak = \frac{1}{T} \int_{0}^{T} x(t) * e^{-j*k} * \frac{2*\pi}{T} *dt $

$ x(t) = cos(2* \pi * t) * cos(4* \pi * t) $

$ = \frac{e^{j*2*\pi*t} + e^{-j*2*\pi*t}}{2} $

$ = \frac{1*e^{j*6*\pi*t}}{4} + \frac{e^{-j*2*\pi*t}}{4} + \frac{e^{j*2*\pi*t}}{4} + \frac{e^{-j*6*\pi*t}}{4} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn