Line 14: Line 14:
 
<br>
 
<br>
 
Then we can know the fundamental frequency is <math>\frac{\pi}{3}</math>. <br>
 
Then we can know the fundamental frequency is <math>\frac{\pi}{3}</math>. <br>
Also, we can get coefficients a0, a2, a5, a-2, a-5.
+
Also, we can get coefficients a_0, a_2, a_5, a_-2, a_-5.

Revision as of 16:20, 21 September 2008

CT signal

$ x(t) = 2 + cos({\frac{2\pi t}{3}})+ 4sin({\frac{5\pi t}{3}})\, $

Coefficients

$ cos({\frac{2\pi t}{3}}) = \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} $

$ 4sin({\frac{5\pi t}{3}}) = -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}} $

$ x(t) = 2 + \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}} $


$ x(t) = 2 + \frac{1}{2}e^{\frac{2j2\pi t}{6}} + \frac{1}{2}e^{\frac{-2j2\pi t}{6}} -2je^{\frac{2j5\pi t}{6}} + 2je^{\frac{-2j5\pi t}{6}} $
Then we can know the fundamental frequency is $ \frac{\pi}{3} $.
Also, we can get coefficients a_0, a_2, a_5, a_-2, a_-5.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett