Line 1: Line 1:
Given the definition of [[3.A David Hartmann _ECE301Fall2008mboutin| Linear systems]]  
+
Given the definition of [[3.A David Hartmann - Linear Systems_ECE301Fall2008mboutin| Linear systems]] we know the response to <math>\alpha x1(t) + \beta x2(t) </math> is <math> \alpha y1(t)+ \beta y2(t).</math>
 
+
<math>\alpha x1(t) + \beta x2(t) </math> is <math> \alpha y1(t)+ \beta y2(t).</math>
+
  
 
Consider the following system:
 
Consider the following system:
<math>e^{2jt}\to system\to te^{-2jt}</math>
 
 
  
  
           <math>e^{-2jt}\to system\to te^{2jt}</math>
+
           <math>e^{-2jt}\to F\left e^{-2jt} \right \to te^{2jt}</math>
  
 
From the given system:
 
From the given system:

Revision as of 14:18, 19 September 2008

Given the definition of Linear systems we know the response to $ \alpha x1(t) + \beta x2(t) $ is $ \alpha y1(t)+ \beta y2(t). $

Consider the following system:


         $ e^{-2jt}\to F\left e^{-2jt} \right \to te^{2jt} $

From the given system:

$ x(t)\to system\to tx(-t) $

From Euler's formula $ e^{iy}=cos{y}+i sin{y} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett