Line 3: Line 3:
 
a)  
 
a)  
 
(i) P(one lost on A,one lost on B)=2!(1/5)(1-1/5)(1/16)
 
(i) P(one lost on A,one lost on B)=2!(1/5)(1-1/5)(1/16)
 +
 
(ii) P(both lost on B)=[(1-1/5)^2]*(1/16)
 
(ii) P(both lost on B)=[(1-1/5)^2]*(1/16)
 +
 
(iii) P(both lost on A)=(1/5)^2
 
(iii) P(both lost on A)=(1/5)^2
  
  
 
I don't really understand the solutiong they give, but i dont really think the solution for a)[ii] is correct. The P for one case lost in B is 1/16, how can lost both in B even higher than lost one?
 
I don't really understand the solutiong they give, but i dont really think the solution for a)[ii] is correct. The P for one case lost in B is 1/16, how can lost both in B even higher than lost one?

Revision as of 15:51, 24 September 2008

For problem 2 I think a) (i) P(one lost on A,one lost on B)=2!(1/5)(1-1/5)(1/16)

(ii) P(both lost on B)=[(1-1/5)^2]*(1/16)

(iii) P(both lost on A)=(1/5)^2


I don't really understand the solutiong they give, but i dont really think the solution for a)[ii] is correct. The P for one case lost in B is 1/16, how can lost both in B even higher than lost one?

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett