Line 12: | Line 12: | ||
<math>e^{j2t} = cos(2t) + jsin(2t)\!</math> and that | <math>e^{j2t} = cos(2t) + jsin(2t)\!</math> and that | ||
+ | |||
<math>e^{-j2t} = cos(2t) - jsin(2t)\!</math> | <math>e^{-j2t} = cos(2t) - jsin(2t)\!</math> |
Revision as of 09:11, 19 September 2008
Given:
For a linear system we have:
$ e^{j2t} \rightarrow [system] \rightarrow te^{-j2t}\! $
$ e^{-j2t} \rightarrow [system] \rightarrow te^{j2t}\! $
To find the response of the system above we first note that
$ e^{j2t} = cos(2t) + jsin(2t)\! $ and that
$ e^{-j2t} = cos(2t) - jsin(2t)\! $